MUC1 oncoprotein promotes autophagy in a survival response to glucose deprivation.
نویسندگان
چکیده
Tumor cells survive under conditions of nutrient deprivation by mechanisms that are not fully understood. The MUC1 oncoprotein is aberrantly overexpressed by most human carcinomas and blocks oxidative stress-induced death. The present studies show that MUC1 inhibits the induction of necrosis in response to the deprivation of glucose. MUC1 suppressed glucose deprivation-induced increases in reactive oxygen species (ROS) and thereby depletion of ATP and cell death. Cells respond to oxidative stress and energy depletion with the induction of autophagy. Our results demonstrate that MUC1 blocks depletion of ATP and sustains growth of glucose-deprived cells by a mechanism sensitive to the autophagy inhibitor, 3-methyladenine. Silencing expression of ATG7, a protein essential for the formation of autophagic vacuoles, also attenuated the MUC1-sustained increases in ATP and growth in response to glucose deprivation. Moreover, we found that MUC1 stimulates AMPK activation and thereby promotes lysosomal turnover of LC3-II, a marker of starvation-induced autophagic activity. These results indicate that MUC1 suppresses glucose deprivation-induced increases in ROS and thereby promotes ATP production and survival. The findings also indicate that the overexpression of MUC1 as found in human cancers could provide a survival advantage in microenvironments with low glucose levels.
منابع مشابه
MUC1 oncoprotein promotes growth and survival of human multiple myeloma cells.
The MUC1 oncoprotein is aberrantly expressed in human multiple myeloma cells by mechanisms that are not understood. Moreover, the functional role of MUC1 in multiple myeloma is not known. The present studies demonstrate that the MUC1 gene locus is amplified in multiple myeloma cell lines and in primary cells from patients. The KMS28PE multiple myeloma cell line, which was found to have MUC1 gen...
متن کاملYAP Enhances Autophagic Flux to Promote Breast Cancer Cell Survival in Response to Nutrient Deprivation
The Yes-associated protein (YAP), a transcriptional coactivator inactivated by the Hippo tumor suppressor pathway, functions as an oncoprotein in a variety of cancers. However, its contribution to breast cancer remains controversial. This study investigated the role of YAP in breast cancer cells under nutrient deprivation (ND). Here, we show that YAP knockdown sensitized MCF7 breast cancer cell...
متن کاملActive autophagy in the tumor microenvironment: A novel mechanism for cancer metastasis
Autophagy is a lysosomal degradation process which is key for the regulation of the turnover of long-lived or damaged proteins and organelles and which promotes cell survival during nutrient deprivation or other microenvironmental stresses. Current evidence supports the hypothesis that autophagy suppresses tumorigenesis, particularly during the early stages of tumor initiation. However, in esta...
متن کاملRheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy.
We previously found that the small GTPase Rheb regulates the cell-cycle inhibitor p27KIP1 (p27) in colon cancer cells by a mTORC1-independent mechanism. However, the biological function of the Rheb/p27 axis in cancer cells remains unknown. Here, we show that siRNA-mediated depletion of Rheb decreases survival of human colon cancer cells under serum deprivation. As autophagy can support cell sur...
متن کاملLiver Autophagy in Anorexia Nervosa and Acute Liver Injury
Autophagy, a lysosomal catabolic pathway for long-lived proteins and damaged organelles, is crucial for cell homeostasis, and survival under stressful conditions. During starvation, autophagy is induced in numerous organisms ranging from yeast to mammals, and promotes survival by supplying nutrients and energy. In the early neonatal period, when transplacental nutrients supply is interrupted, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2009